撰文:Alice,Foresight Ventures
ChatGPT 推出兩個月后用戶數量迅速突破 1 億,成為業內和資本市場的關注熱點。目前,國內外已有多家科技巨頭在 AIGC 領域布局。國內 BAT、字節、網易等公司,國外谷歌、Meta、微軟等多家公司,均推出了 AIGC 的應用產品。加密行業創業者們也在積極探索與 ChatGPT 以及 AI 的結合,試圖要分得一杯羹。
我們認為 AIGC 將成為 Web3 時代的生產力工具。當我們邁入 Web3.0 時代,人工智能、關聯數據和語義網絡構建,形成人與網絡的全新鏈接,內容消費需求飛速增長。UGC\PGC 這樣的內容生成方式將難以匹配擴張的需求。AIGC 將是新的元宇宙內容生成解決方案。AIGC 的生成利用人工智能學習知識圖譜、自動生成,在內容的創作為人類提供協助或是完全由 AI 產生內容。不僅能幫助提高內容生成的效率,還能提高內容的多樣性。
總的看來 AIGC 可以劃分三個維度: 軟件層面包括自然語言處理技術、AIGC 生成算法模型和數據集;硬件層面主要是算力、通信網絡;商業應用層面包括在 web2/web3 的各類消費級應用,本文將主要討論消費應用的潛在創新。
AIGC 技術主要涉及兩個方面:自然語言處理 NLP 和 AIGC 生成算法。
自然語言處理
自然語言處理是實現人與計算機之間如何通過自然語言進行交互的手段。循環神經網絡 (RNN) 是當前 NLP 的主要方法的核心。其中,2017 年由 Google 開發的 Transformer 模型現已逐步取代長短期記憶(LSTM)等 RNN 模型成為了 NLP 問題的首選模型。Transformer 的并行化優勢允許其在更大的數據集上進行訓練。這也促成了 BERT、GPT 等預訓練模型的發展。這些系統使用了維基百科、Common Crawl 等大型語料庫進行訓練,并可以針對特定任務進行微調。
AIGC 生成算法
算法模型的突破是近年來 AIGC 得以快速突破的催化劑,主流的 AIGC 算法模型有兩種:生成對抗網絡 GAN 和擴散模型。
英國法官裁定Craig Wright在比特幣侵權案中敗訴:金色財經報道,英國法官本周裁定,比特幣區塊鏈的文件格式不受版權保護,裁定自稱為比特幣發明家的“澳本聰”Craig Wright敗訴。Wright 聲稱,他以化名中本聰 (Satoshi Nakomoto) 撰寫了 2008 年比特幣白皮書,并且有權利阻止比特幣和從中分叉出來的系統比特幣現金的運行,因為它們侵犯了他的知識產權。James Mellor 法官表示,比特幣的文件格式——頭部序列和交易列表共同構成一個區塊——不能被視為版權作品,因為 Wright 無法展示它們是如何被首次記錄的,關于 2008 年白皮書版權的索賠以及 Wright 是否真的是作者,將是以后裁決的主題。[2023/2/9 11:56:14]
生成對抗網絡 GAN(Generative Adversarial Networks)
對抗神經網絡 GAN (Generative Adversarial Networks) 由一個生成網絡和一個判別網絡組成,生成網絡產生「假」數據,并試圖欺騙判別網絡;判別網絡對生成數據進行真偽鑒別,試圖正確識別所有「假」數據。在訓練迭代的過程中,兩個網絡持續地進化和對抗,直到達到平衡狀態,判別網絡無法再識別「假」數據,訓練結束。
擴散模型 Diffusion Model
擴散模型是一種新型的生成模型,可生成各種高分辨率圖像。在 OpenAI,Nvidia 和 Google 設法訓練大模型之后,它們已經引起了很多關注。擴散模型擴散模型的生成邏輯相比其他的模型更接近人的思維模式,也是為什么近期 AIGC 擁有了開放性的創造力。本質上,擴散模型的工作原理是通過連續添加高斯噪聲來破壞訓練數據,然后通過反轉這個噪聲過程來學習恢復數據。它具有精度更高、可擴展性和并行性,無論是質量還是效率均有所提升,其快速發展成為 AIGC 增長的拐點性因素。同時,在機器學習的過程中,需要通過大量的訓練來實現更準確的結果,對于底層算力需求將有飛速增長。
與傳統算法相比,人工智能算法并無多余的假設前提,而是完全利用輸入的數據自行模擬和構建相應的模型結構,這一算法特點決定了它是更為靈活且可以根據不同的訓練數據而擁有自優化的能力,同時也帶來了顯著增加的運算量。隨著 AIGC 生成量的增加,尤其是未來視頻、游戲等內容的加入,算力需求將暴增,GPU 專用計算集群或將應運而生,這對提高模型精度和用戶體驗至關重要。根據 OpenAI 分析,自 2012 年以來,6 年間 AI 算力需求增長約 30 萬倍:
動態 | 因與Craig Wright關系過近,ETC和以太坊峰會均未邀請 ProgPow的核心開發人員:由于與Craig Wright關系過近,ProgPow 的核心開發人員Kristy-Leigh Minehan未被邀請參加剛剛結束的以太坊峰會和即將開始的 ETC 峰會。同時,ETC合作執行董事Bob Summerwill對 ProgPow算法存在的知識產權問題仍存有疑慮。注:ProgPoW是對 Ethereum哈希算法的一項修改,更加傾向使 GPU礦工受益。(區塊律動)[2019/9/19]
Web3 技術可以通過去中心化的方式提高機器學習的效率,這在傳統的 AI 訓練之中已經有所應用,比如 AlphaGo 的改進版 KataGo 使用了分布式訓練技術,使得全球希望此 AI 更新的人自愿提供算力訓練。
Render Network 是一家基于 GPU 基礎設施,為用戶提供分布式渲染服務的供應商。解決的是傳統的本地渲染和云渲染無法有效利用全球 GPU 算力的問題。可以把 Render Network 看成是中間件,連接供給端和需求端。用戶通過區塊鏈發布渲染任務,而礦工則可以接單幫你渲染,期間的交易費用由 RNDR 結算。
Phala Network 的核心是云計算網絡,它采用「鏈上共識、鏈下計算」的模式,鏈下計算節點不受共識算法的約束,通過并發編程可結合多個節點的計算能力,即便是面對 AI 繁重的計算任務,Phala 也能為其提供源源不斷的算力服務。基于 Secure Enclave 可信執行環境所構建意味著即使是惡意的節點也無法竊取人工智能的數據或操縱其自動化程序的執行、提供虛假結果。
在 web3 中更廣泛的應用可類似于 Gitcoin,捐贈算力可以獲得 POAP,或者類似于 AMM 提供了對于流動性的激勵,成為有償地出租算力的平臺。
從商業應用層面看,AIGC 在文字、圖像、音頻、游戲和代碼生成中商業模型漸顯,尤其在一些具備高重復性的任務、對于精度要求并不那么高的領域應用已逐步成熟,這類 AIGC 服務在 Web2 中一般以提供 SaaS 服務的形式變現(比如 Lensa, ChatGPT pro)。
動態 | 澳本聰發文稱John McAfee是騙子,McAfee回擊表示“我才是真正的Craig Wright”:澳本聰(Craig Wright)在其6月4日的一篇博客文章中將殺軟件之父、加密貨幣支持者John McAfee稱為騙子。 6月7日,McAfee在推特上進行了回擊:“我才是真正的Craig Wright。我可以證明,絕對的。我正在以Craig Wright的身份申請專利。我可以輕而易舉地證明我就是他。但我不會這樣做。你一定要相信我。我很快就會起訴Craig冒充我。” McAfee的回擊引發了加密社區的熱議,英國加密節目主持人Peter McCormack等多人在該條推文下發布了類似句式的回復。[2019/6/8]
相比于 Stability AI、 ChatGPT 等人工智能在傳統領域獲得大量關注和采用,區塊鏈更大的想象力在于可以改變 AI 模型的經濟系統。前段時間出現不少 AI 概念幣的大幅領漲,但我們更關注的是 FOMO 情緒褪去之后,AIGC+Web3 能在應用層產生哪些方向性創新。
不少傳統 web2 用戶對 crypto 充滿興趣,卻往往因為復雜陌生的操作而放棄。AIGC 的出現有望顯著降低 web2 用戶的進入門檻。
1. Web3 搜索引擎:Web3 版本 chatgpt。在現 chatgpt 大模型基礎之上,加入鏈上數據和 twitter, reddit, Lens, Farcaster, Mastodon, 加密媒體等數據源進行訓練,構建 crypto 百科全書。
現有用例:RSS3
RSS3 產品 Hoot.it 在 ChatGPT 的基礎上增加并優化了更多 Web3 等開放網絡的內容訓練,使得用戶在搜索內容時獲得更好的體驗。
現有用例:Kaito
Kaito,人工智能驅動的加密搜索引擎,其數據和信息通常分散在多個來源,例如 Discord、Medium、Mirror、播客抄本以及新聞和研究平臺。Kaito 通過其 AI 驅動的搜索引擎將這些信息集中在一個地方。
動態 | Craig Wright威脅扼殺比特幣ABC:據Coindesk報道,Craig Wright表示,通過部署hashpower,比特幣SV礦工可以有效地挖掘競爭比特幣現金區塊鏈上的空塊,阻止交易通過,使得礦工可以用自己的力量“殺掉”運行比特幣ABC的區塊鏈。開發人員Peter R. Rizun認為,這些威脅可能是“虛張聲勢”,意在嚇唬比特幣ABC的支持者。[2018/11/9]
2. 個性化 onboarding 體驗:通過分析用戶行為和偏好,AI 可以根據每個用戶的風險偏好和過往投資經驗,創建個性化的 onboarding 體驗。相比于文字版教程,AIGC 引擎在創建錢包、登錄、交易、智能合約交互的每一步都能進行一對一指導,降低 onboarding 復雜性和用戶流失率,讓小白用戶更安心。
3. 投資開戶引導:AI 智能助手可為用戶提供最新的市場數據、熱度追蹤和基礎的投資建議。AI 助手可以為小白用戶分析市場上最熱的前十大 NFT/ 山寨幣,生成詳細的數據圖表,并協助用戶在各大交易平臺完成開戶和購買等操作。
1. 增強沉浸感:AIGC 驅動的游戲角色可以為玩家提供更真實的體驗。AI 驅動的 NPC(非玩家角色)可以生成更復雜、逼真的行為,增強游戲的交互性,并根據用戶的行為實時響應他們的行為和決策。
現有用例:荒野大鏢客、地圖生成等。
《荒野大鏢客 2》玩家與 NPC 之間有著豐富的交互選項——問候、買賣、惹惱、掏槍、搶劫、啟動任務、逼問秘密等等,根據交互對象而改變,這些隨機性內容在 AI 的加持下,能夠形成更豐富 / 更真實的交互體驗。
《微軟模擬飛行》所有 1.97 億平方英里的環境主要是通過人工智能來完成,微軟公司與 blackshark.ai 合作,通過 AI 從二維衛星圖像生成無限逼真的三維世界。
聲音 | Craig Wright:大多數ICO的稅收考量被嚴重忽視:nChain首席科學家Craig Wright在其社交媒體表示,使用ICO來轉換未來現金流是未來流動證券化的一種形式,可將商品、收入或服務轉化為有價證券。值得注意的是,由于未來流動證券化并非在資產負債表外,表外融資的許多典型優點(如收益和資本減免)并不適用。大多數ICO的稅收考量被嚴重忽視。[2018/10/9]
2. 降低游戲創作門檻:創作者可以更低門檻地進行游戲創作,目前大多數開放世界的 UCG 游戲編輯器雖然已經簡化了游戲創作的步驟,但仍然創作者需要一定的編程基礎,在 AIGC 的幫助下無代碼編程將成為可能,玩家通過文字描述或圖片生成特定的游戲資產、風格場景、gamplay 等。
現有用例:Lifeform AI
Lifeform 用戶可通過 AI 工具生成專屬卡通角色。Lifeform AI Cartoon 開展了為期一個月 freemint 活動,從 2 月 17 日到 3 月 17 日。玩家大概支付 0.5 美元手續費免費鑄造,每個錢包限額一個. 截止至 2 月 25 日 NFT 已經在 BNBChain 上鑄造了 20.7 萬枚,共 13.3 萬個錢包地址持有 AVATAR NFT。
現有用例:Anything World
Anything world 元宇宙 AI 動畫工具開發公司將于今年 12 月登陸 Epic Games 虛擬引擎。Anything World 主要構建 ML 驅動的大規模創建開源、可用可混合的 3D 工具,降低人們進入 Web3 世界的門檻。
現有用例:AIRENA
AIRENA 是現實世界和 Metaverse 之間的迅捷交互通道,致力于運用先進的 3D AIGC 功能,Metaverse, 空間 UGC 系統,為現實 2D/3D 藝術創作者們建設一站式藝術,娛樂社交平臺。AIRENA 簡化的全格式 NFT 創作流程和 UGC 空間內創作功能將使 AIRENA 成為個人,藝術家,企業參與、整合與構建平行世界的全方位解決方案,為 META 探索和交易數字資產提供無縫體驗。
3. 個性化游戲體驗:AIGC 可以幫助個性化玩家游戲體驗。通過跟蹤玩家的行為和偏好,AI 算法可以提供量身定制的建議和游戲選項,提高玩家滿意度和留存率。
現有用例:Mirror World
AI 驅動的鏈游項目 Mirror World 已于 2021 年 9 月推出互動式 NFT Mirror NFT,可跨 Mirror World 全平臺的游戲流通,并預計將在今年推出三款資產互通的游戲。
4. 公平性和防作弊:AI 驅動的反作弊系統可以檢測異常的行為模式,如自瞄或透視掛,然后標記進行進一步調查。此外 AI 驅動的隨機數生成器(RNG)可提高鏈上菠菜游戲的公平性。
5. 動態游戲平衡:AI 可用于優化游戲平衡,根據玩家的行為和技能水平實時調整難度級別和挑戰。游戲將更加有趣和富有挑戰性,同時玩家也不會因過于困難的關卡而感到沮喪。
現有用例:RCT AI
RCT AI 針對 Axie Infinity 開發了 AI 訓練的 DRL(Deep Reinforcement Learning)模型,由于 Axie Infinity 所有卡牌的組合數量大約有 10^23 種,還有游戲中的博弈等特點,rct AI 的模型在大量模擬對戰數據中提升了效率和勝率。
內容創作: AIGC 可以帶來全新的內容創作方式,運用 AI 生成內容的能力讓普通的加密用戶加入到創作過程中。用戶并不一定要貢獻具體創作的內容,可以貢獻思路或者微調模型。
減輕社交壓力:AIGC 可以幫助用戶總結復雜的信息流,讓用戶能快速讀取關鍵信息,減輕閱讀壓力;在未來有可能通過學習用戶的語氣和個人偏好,在得到用戶授權后自動為我們處理社交消息,完成簡單的決策。
DID 和成就體系:運用 AIGC 打造數字身份或者生成個人成就墻。
現有用例:AspectaAI
Aspecta 基于云端與鏈上數據,應用 AI 打造具有價值深度的數字身份。從開發者開始,革命用戶數據潛能。以 Aspecta ID 作為核心,Aspecta 建立了 Aspecta Identity Ecosystem,通過協議和系統為用戶和第三方應用提供安全、可控的跨 Web2 & Web3 的數據存儲、傳輸和智能應用服務。
潛在用例: AIGC 成就墻
還有一種潛在用例是根據用戶鏈上交互、資產情況、nft 持倉、生成一個藝術墻。不僅僅是簡單地陳列出來,而是將各種元素融合為一體,并隨機應用 3D 畫廊、抽象、油畫、涂鴉等各種豐富的藝術形式表現出來,藝術畫風與元素也會隨著交互記錄動態變化。
1. 生成式 NFT:AIGC 算法可以從個體收藏家的偏好和反饋中學習,隨著越來越多 AI 創作工具對普通用戶開放,讓 NFT 藝術創作變成了像「你畫我猜」一樣簡單的游戲。
現有用例:Eponym,Metascapes
Eponym 是 Art AI 開發的一個可以根據單詞或短語生成藝術作品的 AI 算法,可以在一分鐘之內生成抽象的藝術作品,鑄成 NFT,并將其刻在以太坊上。在 OpenSea 上的第一款產品在幾個小時內就售罄,截至目前已經完成了 4722 筆 NFT 交易,交易總量達 4722 個 ETH。
Metascapes 原始素材來源于從世界上最奇幻的地點拍攝照片,AI 經過學習之后生成了這些 NFT,目前在 OpenSea 上的交易量達到 315 個 ETH。
2. 交互式 NFT: nft 本身可以根據用戶的行為進行交互和成長,比如屬性進化、母 nft 合并、nft 博弈競技等。具體項目如下:
1. 智能交易算法:AI 交易算法可以用于分析市場趨勢,更準確地預測資產價格的走向,幫助交易者做出更明智的投資決策
現有用例:Sumo Signals
Sumo SignalsAI 加密交易策略平臺,可提供基于人工智能的套利交易指標,篩選數百種加密貨幣,尋找表示買入或賣出信號的模式,以幫助加密交易者執行套利交易。
2. 更高效的借貸協議:通過使用 AI 算法,借貸平臺可以自動評估借款人的信用價值并設置適當的利率降低違約風險,使借貸過程更加高效。
3. 去中心化預測市場:通過分析用戶情緒和行為,算法或許能比專家更準確地預測事件的結果,例如選舉或體育比賽。
金色財經 善歐巴
金色早8點
Arcane Labs
MarsBit
Odaily星球日報
歐科云鏈
深潮TechFlow
澎湃新聞
BTCStudy
作者:Daniel Li隨著比特幣NFT協議Ordinals的火爆,整個比特幣NFT市場開啟了新一輪的競爭。作為首批能夠生產比特幣序數的區塊鏈之一,Stacks從中獲益頗豐.
1900/1/1 0:00:00紐約時間周三下午,美聯儲發布了 1 月 31 日至 2 月 1 日的會議紀要,幾乎所有美聯儲官員都支持加息25個基點,“少數”成員表示希望加息 50 個基點.
1900/1/1 0:00:00眾所周知,最近一段時間比特幣上的NFT Ordinals大火。很多市場人士分析認為,作為比特幣智能合約L2的Stacks將是這波BTC NFT熱的受益者。現在這把大火終于燒到Stacks了.
1900/1/1 0:00:00原文標題:《Arbitrum 的時機》 原文作者:藍狐筆記 有不少小伙伴們都說 Arbitrum 一直利用空投預期來吸引更多用戶是很聰明的做法。從戰術層面或許這樣解讀是可以的,看上去也合理.
1900/1/1 0:00:00原文作者:MagnaToken CEO Bruno Brasil Faviero原文編譯:0x214.
1900/1/1 0:00:00Oort 去中心化邊緣節點網絡 (Oort DEN)的最新更新于2月27日發布。該網絡已正式啟動兩周,旨在通過部署分布式邊緣節點來提高 Web3 生態系統的安全性以.
1900/1/1 0:00:00